پتانسیل‌های وابسته به رویداد (ERPs) اولیه در انواع پردازش اطلاعات حسی بینایی و شنوایی حین تصمیم‌گیری فضایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

2 استاد، گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

3 دانشیار، گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

4 استاد، گروه علوم اعصاب ورزش، موسسه حرکت و علوم اعصاب، دانشگاه ورزش کلن آلمان، کلن، آلمان.

چکیده

یکی از سؤالات اساسی تحقیقات پردازش اطلاعات حسی این است که آیا تجربه می‌تواند بر پردازش اطلاعات تاثیر بگذارد؟ هدف پژوهش حاضر بررسی مؤلفه P1 پتانسیل وابسته به رویداد پردازش اطلاعات بینایی، شنوایی و بینایی-شنوایی حین تصمیم‌گیری فضایی بازیکنان نخبه بدمینتون است. مطالعه حاضر از نوع نیمه تجربی، با هدف کاربردی و براساس نمونه‌گیری تصادفی ساده روی 13 بازیکن نخبه بدمینتون انجام شد. سیگنال‌های مغزی با دستگاه الکترونسفالوگرافی با سه بلوک 72 کوششی محرک‌های بینایی، شنوایی و بینای-شنوایی براساس چهار موقعیت تصمیم‌گیری فضایی سنجیده شد. برای تجزیه و تحلیل داده‌ها از نرم‌افزار متلب و اس.پی.اس.اس در سطح معناداری 0/05 استفاده شد. مؤلفه اولیه P1 در بازه زمانی 40 تا 120 میلی ثانیه مورد بررسی قرار گرفت و نتایج نشان داد که در کانال Cz و F7، بین سه حالت پردازش اطلاعلت حسی، در تأخیر موج P1 تفاوت معناداری مشاهده شد؛ به طوری که در حالت بینایی-شنوایی تأخیر کمتری بدست آمد. همچنین در اوج دامنه P1 در کانال‌های Cz، Fz، FC3 و F7 بین سه حالت، تفاوت معناداری مشاهده شد. با توجه به مدل یکپارچگی متقاطع، افراد نخبه براساس سطح تخصص خود، از مناطق شناختی مغز و مناطق ویژه توجه برای پردازش اطلاعات چندحسی و تک‌حسی استفاده می‌کنند. بنابراین تقویت بلندمدت (تجربه ورزشی) به احتمال زیاد می‌تواند سرعت پردازش اطلاعات حسی در مغز را حین تصمیم‌گیری افزایش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Early Event-Related Potentials (ERPs) in Types of Visual and Auditory Sensory Information Processing during Spatial Decision-Making

نویسندگان [English]

  • Kosar Abbaspour 1
  • Mohammadtaghi Aghdasi 2
  • Zahra Fathirezaie 3
  • Seyed Hojjat Zamani Sani 3
  • Stefan Schneider 4
1 PhD student, Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
2 Professor, Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
3 Associate Professor, Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
4 Professor, Department of Exercise Neuroscience, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.
چکیده [English]

One of the fundamental questions in sensory information processing research is whether experience and expertise can influence sensory-perceptual processing. The aim of the present study is to investigate component P1 based on event-related potential in the processing of visual, auditory, and audio-visual information during spatial decision-making in elite badminton players. The present study was a semi-experimental study with an applied objective and was conducted on 13 elite badminton players based on simple random sampling. Brain signals of badminton players were measured using a 30-channel active electroencephalography device with three blocks of 72 trials of visual, auditory, and visual-auditory stimuli based on four spatial decision-making conditions. Data analysis was performed using MATLAB and SPSS 26 software at a significance level of 0.05. For the early component P1 in the 40 to 120 millisecond range, differences were observed in peak latencies of the P1 wave between the Cz and F7 channels across three information processing, with a shorter latency observed in the audio-visual stimuli. Additionally, significant differences were observed in the peak amplitude of P1 in the Cz, Fz, Fc3, and F7 channels across three sensory conditions. Based on the model of cross-modal integration, elite individuals have utilized cognitive brain regions and attention allocation areas according to their level of expertise for processing multi-sensory and even unisensory information. Therefore, long-term reinforcement (sport experience) may potentially increase brain information processing speed during decision-making.

کلیدواژه‌ها [English]

  • Audio
  • Brain
  • Multisensory
  • Sport
  • Visual
شهبازی، مهدی؛ و هژبرنیا، راضیه. (1400). مقاله مروری: بررسی نقش تصمیم‌گیری در عملکرد ورزشی. نشریه روانشناسی ورزش، 13(2): 45-72.
Allerdissen, M., Güldenpenning, I., Schack, T., & Bläsing, B. (2017). Recognizing fencing attacks from auditory and visual information: a comparison between expert fencers and novices. Psychology of Sport and Exercise, 31, 123-130.
Bertonati, G., Amadeo, M. B., Campus, C., & Gori, M. (2023). Task‐dependent spatial processing in the visual cortex. Human Brain Mapping44(17), 5972-5981.
Bolam, J. W. (2022). Investigating the Cognitive and Neural Mechanisms underlying Multisensory Perceptual Decision-Making in Humans (Doctoral dissertation, University of Leeds).
Brandwein, A. B., Foxe, J. J., Butler, J. S., Russo, N. N., Altschuler, T. S., Gomes, H., & Molholm, S. (2013). The development of multisensory integration in high-functioning autism: high-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cerebral cortex23(6), 1329-1341.
Brang, D., Taich, Z. J., Hillyard, S. A., Grabowecky, M., & Ramachandran, V. S. (2013). Parietal connectivity mediates multisensory facilitation. Neuroimage78, 396-401.
Camponogara, I., Rodger, M., Craig, C., & Cesari, P. (2017). Expert players accurately detect an opponent’s movement intentions through sound alone. Journal of Experimental Psychology: Human Perception and Performance43(2), 348.
Cañal-Bruland, R., Müller, F., Lach, B., & Spence, C. (2018). Auditory contributions to visual anticipation in tennis. Psychology of Sport and Exercise36, 100-103.
Choi, I., Lee, J. Y., & Lee, S. H. (2018). Bottom-up and top-down modulation of multisensory integration. Current Opinion in Neurobiology52, 115-122.
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: from origin to function. Behavioral and brain sciences37(2), 177-192.
De Sousa, G. (2021). Neural correlates of multisensory decision making in humans (Doctoral dissertation, University of Glasgow).
Gleiss, S., & Kayser, C. (2013). Eccentricity dependent auditory enhancement of visual stimulus detection but not discrimination. Frontiers in integrative neuroscience7, 52.
Gori, M., Bertonati, G., Campus, C., & Amadeo, M. B. (2023). Multisensory representations of space and time in sensory cortices. Human Brain Mapping44(2), 656-667.
Hülsdünker, T., Riedel, D., Käsbauer, H., Ruhnow, D., & Mierau, A. (2021). Auditory information accelerates the Visuomotor reaction speed of Elite Badminton players in Multisensory environments. Frontiers in Human Neuroscience15, 779343.
Steenson, C., & Rodger, M. W. (2015). Bringing sounds into use: thinking of sounds as materials and a sketch of auditory affordances. The Open Psychology Journal8(1).
Jin, H., Xu, G., Zhang, J. X., Ye, Z., Wang, S., Zhao, L., ... & Mo, L. (2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology78(3), 308-314.
Klatt, S., & Smeeton, N. J. (2020). Visual and auditory information during decision making in sport. Journal of Sport and Exercise Psychology, 42(1):15-25.
Klein-Soetebier, T., Noël, B., & Klatt, S. (2021). Multimodal perception in table tennis: the effect of auditory and visual information on anticipation and planning of action. International Journal of Sport and Exercise Psychology, 19(5), 834-847.
Land, W. M., Volchenkov, D., Bläsing, B. E., & Schack, T. (2013). From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control. Frontiers in Computational Neuroscience7, 127.
Li, L., & Smith, D. M. (2021). Neural efficiency in athletes: a systematic review. Frontiers in Behavioral Neuroscience15, 698555.
Lin, Y. Q., Cui, S. S., Du, J. J., Li, G., He, Y. X., Zhang, P. C., ... & Chen, S. D. (2019). N1 and P1 components associate with visuospatial-executive and language functions in normosmic Parkinson’s disease: an event-related potential study. Frontiers in Aging Neuroscience11, 18.
Marian, V., Hayakawa, S., & Schroeder, S. R. (2021). Cross-modal interaction between auditory and visual input impacts memory retrieval. Frontiers in Neuroscience15, 661477.
McCracken, H. S., Murphy, B. A., Glazebrook, C. M., Burkitt, J. J., Karellas, A. M., & Yielder, P. C. (2019). Audiovisual multisensory integration and evoked potentials in young adults with and without attention-deficit/hyperactivity disorder. Frontiers in human neuroscience13, 95.
Mercier, M. R., & Cappe, C. (2020). The interplay between multisensory integration and perceptual decision making. NeuroImage222, 116970.
Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory–visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cognitive brain research14(1), 115-128.
Møller, C., Højlund, A., Bærentsen, K. B., Hansen, N. C., Skewes, J. C., & Vuust, P. (2018). Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities. Attention, Perception, & Psychophysics80, 999-1010.
Murray, M. M., Lewkowicz, D. J., Amedi, A., & Wallace, M. T. (2016). Multisensory processes: a balancing act across the lifespan. Trends in neurosciences39(8), 567-579.
Naci, L., Taylor, K. I., Cusack, R., & Tyler, L. K. (2012). Are the senses enough for sense? Early high-level feedback shapes our comprehension of multisensory objects. Frontiers in Integrative Neuroscience6, 82.
Nazzal, A. M. (2017). Visual and Auditory Perceptual Decision-Making in The Human Brain as Invesitgated by FMRI and Lesion Studies (Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen).
O'connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature neuroscience15(12), 1729-1735.
Özmerdivenli, R., Bulut, S., Bayar, H., Karacabey, K., Ciloglu, F., Peker, I., & Tan, U. (2005). Effects of exercise on visual evoked potentials. International Journal of Neuroscience115(7), 1043-1050.
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods162(1-2), 8-13.
Pizzera, A., Hohmann, T., Streese, L., Habbig, A., & Raab, M. (2017). Long-term effects of acoustic reafference training (ART). European Journal of Sport Science17(10), 1279-1288.
Podrihalo, O., Jagiello, W., Xiaohong, G., Podrigalo, L., Yermakova, T., & Cieslicka, M. (2023). Sensory integration research: priority scientific directions based on the analysis of Web of Science Core Collection resources. Physical Education of Students27(6), 358-377.
Ponzo, S., Kirsch, L. P., Fotopoulou, A., & Jenkinson, P. M. (2018). Balancing body ownership: Visual capture of proprioception and affectivity during vestibular stimulation. Neuropsychologia117, 311-321.
Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in psychology10, 244.
Schmidt, R., & Lee, T. (2019). Motor learning and performance 6th edition with web study guide-loose-leaf edition: From principles to application. Human Kinetics Publishers.
Sors, F., Murgia, M., Santoro, I., Prpic, V., Galmonte, A., & Agostini, T. (2017). The contribution of early auditory and visual information to the discrimination of shot power in ball sports. Psychology of Sport and Exercise, 31, 44-51.
Stefanou, M. E., Dundon, N. M., Bestelmeyer, P. E., Ioannou, C., Bender, S., Biscaldi, M., ... & Klein, C. (2020). Late attentional processes potentially compensate for early perceptual multisensory integration deficits in children with autism: evidence from evoked potentials. Scientific Reports10(1), 16157.